Inorganic Reactions and Methods: Electron-Transfer and by J. J. Zuckerman, A. P. Hagen

By J. J. Zuckerman, A. P. Hagen

The right way to Use this Book

Preface to the Series

Editorial experts to the Series

individuals to quantity 15

12. Electron-Transfer and Electrochemical Reactions

12.1. Introduction

12.2. Electron Transfer

12.3. Electrochemical Reactions

thirteen. Photochemical and different Energized Reactions

13.1. Introduction

13.2. Photosubstitution and Photoisomerization

13.3. Photoinduced Cleavage of Metal-Metal Bonds

13.4. Photoinduced Electron-Transfer Reactions

13.5. Pulse Radiolysis

record of Abbreviations

writer Index

Compound Index

topic IndexContent:
Chapter 12.2.1 advent (pages 1–5): J. J. Zuckerman, N. Sutin and R.G. Linck
Chapter 12.2.2.1 Outer?Sphere Reactions (pages 5–7): R.G. Linck
Chapter 12.2.2.1.2 Outer?Sphere Transition States (pages 7–9): R.G. Linck
Chapter 12.2.2.2 Inner?Sphere Reactions (pages 9–11): R.G. Linck
Chapter 12.2.2.2.2 Inner?Sphere Reactions: Scheme II (pages 11–12): R.G. Linck
Chapter 12.2.2.2.3 Inner?Sphere Reactions: Scheme III (pages 12–14): R.G. Linck
Chapter 12.2.2.2.4 Double?Ligand Bridging (page 14): R.G. Linck
Chapter 12.2.2.3 different response periods (page 14): R.G. Linck
Chapter 12.2.2.3.2 Intramolecular Electron move (pages 14–15): R.G. Linck
Chapter 12.2.2.3.3 Two?Electron Transfers (page 16): R.G. Linck
Chapter 12.2.3 conception of Electron?Transfer Reactions (pages 16–17): N. Sutin
Chapter 12.2.3.1 the steadiness of the Precursor complicated (pages 17–19): N. Sutin
Chapter 12.2.3.2 Potential?Energy Surfaces (page 20): N. Sutin
Chapter 12.2.3.2.1 Of 0 Order (pages 20–22): N. Sutin
Chapter 12.2.3.2.2 Of First Order (pages 22–23): N. Sutin
Chapter 12.2.3.2.3 The digital issue (pages 23–24): N. Sutin
Chapter 12.2.3.3 Electron?Exchange Reactions (pages 24–26): N. Sutin
Chapter 12.2.3.3.1 The Reorganization power (pages 26–29): N. Sutin
Chapter 12.2.3.3.2 Nuclear Tunneling in Electron alternate (pages 29–30): N. Sutin
Chapter 12.2.3.3.3 Quantum?Mechanical remedy (pages 30–31): N. Sutin
Chapter 12.2.3.3.4 comparability of saw and Calculated Parameters for Electron alternate (pages 32–37): N. Sutin
Chapter 12.2.3.4 Electron move followed by way of a web Chemical swap (pages 37–41): N. Sutin
Chapter 12.2.3.4.2 pass Reactions and Electron?Exchange charges (pages 41–45): N. Sutin
Chapter 12.2.3.4.3 Quantum?Mechanical therapy (pages 45–46): N. Sutin
Chapter 12.2.3.5 Conclusions (pages 46–49): C. Creutz and N. Sutin
Chapter 12.2.4.1 The Inner?Shell Reorganization strength: alternate premiums of Aquo Ions (pages 49–53): C. Creutz and N. Sutin
Chapter 12.2.4.2 diversifications with Ligand: The Outer?Shell Reorganization strength (pages 53–57): C. Creutz and N. Sutin
Chapter 12.2.4.3 digital elements: Nonadiabaticity (pages 58–59): C. Creutz and N. Sutin
Chapter 12.2.4.4 Free?Energy kin (pages 59–64): C. Creutz and N. Sutin
Chapter 12.2.4.5 Inner?Sphere as opposed to Outer?Sphere Electron move (pages 64–65): N. Sutin
Chapter 12.2.4.6 cost Saturation in Electron move (pages 65–68): N. Sutin
Chapter 12.2.5 particular Reactivity styles in Electron?Transfer Reactions (pages 68–78): R.G. Linck
Chapter 12.2.5.1.2 Two?Electron Reductants (page 78): R.G. Linck
Chapter 12.2.5.2 version with the Oxidant (pages 78–81): R.G. Linck
Chapter 12.2.5.2.2 Multiple?Electron Oxidants (pages 81–82): R.G. Linck
Chapter 12.2.5.3 Oxidation and relief of Coordinated Ligands (page 82): R.G. Linck
Chapter 12.2.5.4 Catalysis in Electron?Transfer Reactions (pages 83–84): R.G. Linck
Chapter 12.2.5.4.2 Catalyzed Ligand Substitution (pages 84–85): R.G. Linck
Chapter 12.2.5.5 brought on Electron?Transfer Reactions (pages 85–86): R.G. Linck
Chapter 12.2.5.6 Photoinduced Electron?Transfer Reactions (pages 86–87): R.G. Linck
Chapter 12.3.1 creation (page 88): W.E. Geiger
Chapter 12.3.1.1 The Electrode technique (pages 88–90): W.E. Geiger
Chapter 12.3.1.2.2 Chemical Reversibility (pages 90–100): W.E. Geiger
Chapter 12.3.2.1.2 Pulse?Polarographic tools (pages 100–106): W.E. Geiger
Chapter 12.3.2.1.3 Alternating?Current Polarography (pages 107–110): W.E. Geiger
Chapter 12.3.2.1.4 Cyclic Voltammetry (pages 110–116): W.E. Geiger
Chapter 12.3.3 review of Formal Potentials (pages 116–117): W.E. Geiger
Chapter 12.3.3.2 related to volatile Electrode items (pages 118–123): W.E. Geiger
Chapter 12.3.3.3 related to Reactants present process Multiple?Electrode Reactions (pages 123–128): W.E. Geiger
Chapter 12.3.4 Chemical Reactions Accompanying Electrode Reactions (pages 128–129): W.E. Geiger
Chapter 12.3.4.1.2 Fast?Reaction (I ? A) restrict (pages 130–133): W.E. Geiger
Chapter 12.3.4.2 Reactions Following Electron move (EC) (pages 133–135): W.E. Geiger
Chapter 12.3.4.2.2 Giving Electroactive items (ECE) (pages 135–141): W.E. Geiger
Chapter 12.3.4.3 different Coupled Chemical Reactions (pages 141–142): W.E. Geiger
Chapter 12.3.5 Electrochemical Synthesis (page 142): W.E. Geiger
Chapter 12.3.5.1 through Controlled?Potential Electrolysis (pages 142–145): W.E. Geiger
Chapter 12.3.5.2 regarding Bulk arrangements (pages 145–146): W.E. Geiger
Chapter 12.3.6 Thermodynamics of straightforward Electrochemical Reactions (pages 147–150): M.J. Weaver
Chapter 12.3.7 Kinetics of Electrochemical Reactions (pages 150–153): M.J. Weaver
Chapter 12.3.7.2 idea of Heterogeneous Electron?Transfer Reactions (pages 153–163): M.J. Weaver
Chapter 12.3.7.3 Double?Layer results in Electrochemical Kinetics (pages 164–165): M.J. Weaver
Chapter 12.3.7.4 Electrode?Reaction Mechanisms (pages 165–167): M.J. Weaver
Chapter 12.3.7.5 impression of the Electrode fabric (pages 168–171): M.J. Weaver
Chapter 12.3.7.6 Electrochemical Reactivity Patterns—Comparisons with Homogeneous Reactivities (pages 171–174): M.J. Weaver
Chapter 13.2 Photosubstitution and Photoisomerization (pages 175–179): G.L. Geoffroy and %. Ford
Chapter 13.2.1 With crew through Complexes (pages 179–183): percent. Ford
Chapter 13.2.1.2 Of Molybdenum and Tungsten (pages 183–184): %. Ford
Chapter 13.2.2 With team VIIA Complexes (page 184): percent. Ford
Chapter 13.2.3 With staff VIII Complexes (pages 184–186): %. Ford
Chapter 13.2.3.2 Of Ruthenium (pages 186–190): percent. Ford
Chapter 13.2.3.3 Of Osmium (page 190): %. Ford
Chapter 13.2.3.4 Of Cobalt (pages 190–194): percent. Ford
Chapter 13.2.3.5 Of Rhodium(III) and Iridium(III) (pages 195–198): %. Ford
Chapter 13.2.3.6 Of Nickel(II) and Palladium(II) (pages 198–199): %. Ford
Chapter 13.2.3.7 Of Platinum(II) (pages 199–202): %. Ford
Chapter 13.2.3.8 Of Platinum(IV) (pages 202–204): percent. Ford
Chapter 13.2.4 With steel Carbonyls (pages 204–205): H.B. Abrahamson
Chapter 13.2.4.1.1 Of Titanium, Zirconium and Hafnium (pages 205–206): H.B. Abrahamson
Chapter 13.2.4.1.2 Of Vanadium, Niobium and Tantalum (pages 206–209): H.B. Abrahamson
Chapter 13.2.4.1.3 Of Chromium, Molybdenum and Tungsten (pages 209–217): H.B. Abrahamson
Chapter 13.2.4.1.4 Of Manganese and Rhenium (pages 217–221): H.B. Abrahamson
Chapter 13.2.4.1.5 Of Iron, Ruthenium and Osmium (pages 221–224): H.B. Abrahamson
Chapter 13.2.4.1.6 Of Cobalt, Rhodium and Iridium (pages 225–226): H.B. Abrahamson
Chapter 13.2.4.1.7 Of Nickel (page 226): H.B. Abrahamson
Chapter 13.2.4.2 regarding Dinuclear Complexes (pages 226–229): H.B. Abrahamson
Chapter 13.2.4.3 concerning Polynuclear Complexes (pages 229–230): H.B. Abrahamson
Chapter 13.2.5 With different Organometallic Complexes (pages 230–235): G.L. Geoffroy
Chapter 13.2.5.2 Containing Isocyanides (pages 235–236): G.L. Geoffroy
Chapter 13.2.5.3 Containing Olefins (pages 236–240): G.L. Geoffroy
Chapter 13.2.5.4 Containing Arenes and Cyclopentadienyls (pages 240–242): G.L. Geoffroy
Chapter 13.2.5.5 Containing Alkyls (pages 242–245): G.L. Geoffroy
Chapter 13.3.1 In Dinuclear Complexes (pages 246–248): H.B. Abrahamson
Chapter 13.3.1.1.2 And comprise Manganese, Technetium and Rhenium (pages 248–252): H.B. Abrahamson
Chapter 13.3.1.1.3 And comprise Iron and Ruthenium (pages 252–254): H.B. Abrahamson
Chapter 13.3.1.1.4 And include Cobalt (pages 254–255): H.B. Abrahamson
Chapter 13.3.1.1.5 And include Nickel, Palladium and Platinum (pages 255–256): H.B. Abrahamson
Chapter 13.3.1.2 which are Heteronuclear (pages 256–257): H.B. Abrahamson
Chapter 13.3.2 In Polynuclear Complexes (pages 257–259): H.B. Abrahamson
Chapter 13.4 Photoinduced Electron?Transfer Reactions (page 260): N. Sutin
Chapter 13.4.1 Excited?State Assignments (pages 260–262): N. Sutin
Chapter 13.4.2 Excited?State Electron alternate (pages 262–265): N. Sutin
Chapter 13.4.3 Quenching and again Reactions (pages 265–268): N. Sutin
Chapter 13.4.4 Free?Energy kinfolk (pages 269–271): N. Sutin
Chapter 13.5.1 advent (pages 272–273): M.Z. Hoffman
Chapter 13.5.3 innovations (pages 273–274): M.Z. Hoffman
Chapter 13.5.4.1 Of Hydrated Electrons (page 274): M.Z. Hoffman
Chapter 13.5.4.2 Of Hydroxyl Radicals (pages 274–275): M.Z. Hoffman
Chapter 13.5.4.3 Of Hydrogen Atoms (page 275): M.Z. Hoffman
Chapter 13.5.4.4 Of Secondary Radicals (pages 275–276): M.Z. Hoffman
Chapter 13.5.5 Of steel Complexes (pages 276–277): M.Z. Hoffman
Chapter 13.5.5.1 concerning teams IA and IIA (page 277): M.Z. Hoffman
Chapter 13.5.5.2 related to crew IIIA (page 277): M.Z. Hoffman
Chapter 13.5.5.3 concerning crew IVA (page 277): M.Z. Hoffman
Chapter 13.5.5.4 related to crew VA (pages 277–278): M.Z. Hoffman
Chapter 13.5.5.5 concerning team through (pages 278–279): M.Z. Hoffman
Chapter 13.5.5.5.2 With Molybdenum and Tungsten (page 279): M.Z. Hoffman
Chapter 13.5.5.6 concerning team VIIA (page 280): M.Z. Hoffman
Chapter 13.5.5.6.2 With Technetium (pages 280–281): M.Z. Hoffman
Chapter 13.5.5.7 related to workforce VIIIA (pages 281–282): M.Z. Hoffman
Chapter 13.5.5.7.2 With Ruthenium (pages 282–284): M.Z. Hoffman
Chapter 13.5.5.7.3 With Osmium (page 284): M.Z. Hoffman
Chapter 13.5.5.7.4 With Cobalt (pages 284–288): M.Z. Hoffman
Chapter 13.5.5.7.5 With Rhodium (pages 288–289): M.Z. Hoffman
Chapter 13.5.5.7.6 With Iridium (page 289): M.Z. Hoffman
Chapter 13.5.5.7.7 With Nickel (pages 289–290): M.Z. Hoffman
Chapter 13.5.5.7.8 With Palladium and Platinum (pages 290–291): M.Z. Hoffman
Chapter 13.5.5.8 regarding crew IB (pages 291–292): M.Z. Hoffman
Chapter 13.5.5.8.2 With Silver (pages 292–293): M.Z. Hoffman
Chapter 13.5.5.8.3 With Gold (page 293): M.Z. Hoffman
Chapter 13.5.5.9 concerning staff IIB (pages 293–294): M.Z. Hoffman
Chapter 13.5.5.9.2 With Cadmium (page 294): M.Z. Hoffman
Chapter 13.5.5.9.3 With Mercury (pages 294–295): M.Z. Hoffman
Chapter 13.5.5.10 regarding crew NIB (page 295): M.Z. Hoffman
Chapter 13.5.5.10.2 With Indium (page 295): M.Z. Hoffman
Chapter 13.5.5.10.3 With Thallium (page 295): M.Z. Hoffman
Chapter 13.5.5.11 regarding workforce IVB (page 296): M.Z. Hoffman
Chapter 13.5.5.11.2 With Lead (page 296): M.Z. Hoffman
Chapter 13.5.5.12 related to Lanthanides (page 296): M.Z. Hoffman
Chapter 13.5.5.13 related to Actinides (page 297): M.Z. Hoffman

Show description

Read or Download Inorganic Reactions and Methods: Electron-Transfer and Electrochemical Reactions; Photochemical and Other Energized Reactions, Volume 15 PDF

Similar inorganic books

Inorganic Chemistry in Focus III

Electron move is an important approach to happen in common and synthetic chemical platforms, taking part in a primary position, for instance, in photosynthesis in addition to in images. Electron move reactions - oxidations and mark downs - are considering, between others, a number of power conversion approaches, analytical equipment, man made thoughts, and knowledge processing platforms.

Unimolecular Reaction Dynamics: Theory and Experiments (International Series of Monographs on Chemistry)

This ebook presents a penetrating and complete description of power chosen reactions from a theoretical in addition to experimental view. 3 significant facets of unimolecular reactions related to the training of the reactants in chosen power states, the speed of dissociation of the activated molecule, and the partitioning of the surplus strength one of the ultimate items, are absolutely mentioned via one hundred seventy five illustrations and over 1,000 references, such a lot from the hot literature.

Lanthanide and Actinide Chemistry

The one creation into the interesting chemistry of Lanthanides and Actinides. The e-book is predicated on a couple of classes on "f components" the writer has a protracted event in educating this box of chemistry Lanthanides became quite common components in study and know-how functions; this booklet bargains the fundamental wisdom The ebook bargains insights right into a gigantic diversity of functions, from lasers to synthesis The Inorganic Chemistry: A Textbook sequence displays the pivotal position of recent inorganic and actual chemistry in an entire diversity of rising parts, reminiscent of fabrics chemistry, eco-friendly chemistry and bioinorganic chemistry, in addition to supplying a fantastic grounding in validated parts akin to sturdy nation chemistry, coordination chemistry, major team chemistry and actual inorganic chemistry.

S Sulfur-Nitrogen Compounds Part 8: Compounds with Sulfur of Oxidation Number IV

PF3, (CH3)3SiCl -> (CH3)3SiF, and RC(O)Cl -> RC(O)F. Others contain the conversion of (C6H5)3P into (C6H5)3PF2 and of (R3NC(S)S)2 into R2NCF3, R=alkyl. In natural chemistry, fluorides are simply available from alcohols, geminal fluorides RR'CF2 from the respective aldehydes or ketones, and acyl fluorides RC(O)F from carboxylic acides by utilizing DAST.

Additional info for Inorganic Reactions and Methods: Electron-Transfer and Electrochemical Reactions; Photochemical and Other Energized Reactions, Volume 15

Example text

R . Gagne, L. M. Henling, T . J. Kistenmacher, Inorg. , 19, 1226 (1980). 5. J. A. Krdmer, D. N. Hendncson, Inorg. Chem.. 19, 3330 (1980). This is a leading reference. 6. F. Felix, A. Ludi, Inorg. , 17. 1782 (1978). 7. W. P. Griffith, Quort. , Chem. Soc.. 16, 188 (1962). 8. N . S. Hush, Prog Inorg. , 8, 391 (1967). 9. S. S. Isied, H. Taube, J. Am. Chem. , 95, 8198 (1973). 10. H. Fischer, G. M. Tom, H. Taube, J. Am. Chem. , 98, 5512 (1976). 11. -J. Jwo, P. L. Gans, A. Haim, J. Am. Chem. , 101, 6189(1979).

This value depends in theory on the radii of the ions (or strictly, the charge to charge distance), and hence varies greatly in species of less than 0, microsymmetry, as in: [(NH,),CO(PY)]~+-t- [Fe(CN),]’- -, [ (NH,),Co(py),NCFe(CN),] - (d) [(NH,),CO(PY)]~++ [Fe(CN),I4- -, [(NHJ,(py)CoNH,, NCFe(CN),]- (e) The calculated value for Eq. (e) agrees with the observed value, implying that association is favored on the NH, side of [Co(NH,),(py)l3+. Similar reactivity patterns with substituted pyridine ligands support this assignment for the transition as well as for the ground state of the associated complexes.

G. LINCK) E. A. M. Wetton, W. C. E. Higginson, J. Chem. ,5890 (1965). F. B. Baker, W. D. Brewer, T. W. Newton, Inorg. , 5, 1294 (1966). H. A. Schwarz, D. Comstock, J. K. Yandell, R. W. Dodson, J. Phys Chem.. 78, 488 (1974). B. Balcinella, P. D. Felgate, G. S. Laurence, J. Chem. ,Dalton Trans, 1367 (1974). 5 . B. Balcinella, P. D. Felgate, G. S. Laurence, J. Chem. , 1 (1975). 6 . D. E. Pennington, in Coordination Chemistry, Vol. 2, A. E. , American Chemical Society, Washington, DC, 1978, p. 476.

Download PDF sample

Rated 4.87 of 5 – based on 31 votes