Introduction to computational linguistics by Kracht M.

By Kracht M.

Show description

Read or Download Introduction to computational linguistics PDF

Best computational mathematicsematics books

Analytical and numerical approaches to asymptotic problems in analysis: proceedings of the Conference on Analytical and Numerical approaches to Asymptotic Problems, University of Nijmegen, the Netherlands, June 9-13, 1980

A world convention on Analytical and Numerical ways to Asymptotic difficulties used to be held within the school of technology, collage of Nijmegen, The Netherlands from June ninth via June thirteenth, 1980.

Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis, and Computation (Advances in Design and Control)

This self-contained, sensible, entry-level textual content integrates the elemental ideas of utilized arithmetic, utilized chance, and computational technology for a transparent presentation of stochastic techniques and regulate for jump-diffusions in non-stop time. the writer covers the $64000 challenge of controlling those structures and, by utilizing a bounce calculus building, discusses the robust position of discontinuous and nonsmooth houses as opposed to random houses in stochastic structures.

Computational Science – ICCS 2007: 7th International Conference, Beijing, China, May 27 - 30, 2007, Proceedings, Part III

A part of a four-volume set, this e-book constitutes the refereed lawsuits of the seventh foreign convention on Computational technology, ICCS 2007, held in Beijing, China in may perhaps 2007. The papers hide a wide quantity of issues in computational technology and similar components, from multiscale physics to instant networks, and from graph thought to instruments for software improvement.

Extra info for Introduction to computational linguistics

Sample text

Xj i0 −→ qj+1 ❼➥➬ qj+1 ∈ Hj+1 å➜➁✫➊✂➃✏➁➣➭ ❼❾➬ ➙✉ý❪➎➒➇✉➄➍❻✂➁✏➊✡➄➆❻✂➁✫➇➏➁✘➁➧➻➑❼➂❽↕➄➍❽❨➉➣➊✡➉✺➃✫➃✫➁✏→❢➄➍❼❾➊✂↔➢❽➏➄➍➉✺➄➍➁➀❼❾➊ x ∈ L(A) Hn ∩ F = ∅ ➙➀å➱➁✏➇➆➁❝➁✫➉➣➃t❻➋❽➏➄➆➁✫→☞➄➍➉➣➫➣➁✏❽➝➄➍❼❾➔✧➁❊➵✴➅❪➉➣➐✂➇➆➉✺➄➍❼❾➃➈❼❾➊➓➄➍❻✂➁➈➊✴➅✂➔❝➨✸➁✫➇➀➎➣➟❂❽➏➄t➉Ô➄➍➁✫❽✏ç➜➟❫➎➣➇➱↔➒❼➥➸➒➁✏➊ Hn ➭✂➡●➁➞➃✏➎➒➔✧→❢➅❢➄➍➁ ➨➌➤✖➐✂➎➣❼➂➊✂↔ ➔✧➉➣➊➌➤✿❿❾➎➑➎➣➫❁➅❢→✂❽⑦➟❫➎➒➇✬➁✏➸➣➁✫➇↕➤ ➙✪å➜➎❄➡✍➁✏➸➣➁✫➇✏➭ Hj Hj+1 Q q ∈ Hj ➄➆❻✂❼➂❽➈➊❁➅❢➔❝➨❜➁✏➇❯❼➂❽➈➨❪➉➣❽➆❼❾➃✤➉➣❿❾❿❾➤➩➨✸➎➒➅✂➊✂➐✂➁✏➐❅➟❫➎➒➇✛↔➒❼➥➸➒➁✏➊ ➙ ✰ ➎☞➄➆❻✂➁❩➄➍❼❾➔✧➁✧➇➆➁✏➵❁➅❢❼➂➇➆➁✏➔✧➁✏➊➌➄❯❼➂❽ A ➐✂➎✷➡❨➊✣➄➍➎➩➉➩➃✏➎➒➊✂❽↕➄t➉➣➊➌➄✧➐✂➁✫→✸➁✫➊✂➐❢❼➂➊✂↔➩➎➒➊ ➄➍❼❾➔✧➁✏❽❝➄➍❻✂➁✡❿➂➁✏➊✂↔➣➄➆❻Û➎➣➟ ➙✢❺✬❻✂❼➂❽☎❼➂❽❯➔✛➅✂➃t❻ A ➨✸➁✏➄➏➄➍➁✫➇✏➙✡å➱➎✷➡✍➁✏➸➒➁✏➇✫➭✝❼❾➊➳→✂➇➆➉➣➃✏➄➆❼➂➃✫➉➣❿✝➄➍➁✫➇➏➔✧❽➞ ➄➍❻❢❼➂❽❊❼➂❽➞❽➏➄➆❼➂❿➂❿✝➊❢➎➣➄✛↔➣➎➑➎❁➐➳➁✏x➊✂➎➒➅✂↔➣❻♥✬ ➙ ❞●➁✫➃✫➉➣➅✂❽➏➁ ➄➆❻✂➁❯➃✫➎➒➊❢❽➏➄t➉✺➊✴➄➞❼➥➄➝➄➍➉➣➫➣➁✏❽➞➄➆➎✖➃✫➎➒➔☎→✂➅❢➄➆➁❯➉✿❽➆❼❾➊✂↔➒❿❾➁✛❽➏➄➆➁✫→➩❼➂❽➝➄➆➎➑➎❩❿➮➉➣➇➏↔➒➁➣➙➞❺✬❻✂❼❾❽➀❼➂❽➀➨✸➁✫➃✫➉➣➅✂❽➏➁ ➄➍➎ ➙è➯➶➟➞➄➍❻✂➁➋❽↕➄➍➇➆❼❾➊✂↔➦❼❾❽❩➸➒➁✏➇➏➤❵❿❾➎➒➊✂↔✂➭⑦➄➆❻✂❼➂❽ ➡✍➁➋➇➆➁✏➃✫➎➒➔☎→✂➅❢➄➆➁➓➄➍❻✂➁☞➄➆➇➍➉➣➊❢❽➆❼❾➄➆❼➂➎➒➊ Hj Hj+1 ➔☎➁✤➉➣➊❢❽❨➄➆❻❪➉✺➄❨➡✍➁➈➇➏➁✫➃✫➎➣➔✧→✂➅➑➄➍➁➞➄➍❻✂➁➞❽➍➉✺➔✧➁➞→✂➇➏➎➒➨✂❿➂➁✏➔❶➎✷➸➒➁✏➇➀➉➣➊✂➐✦➎✷➸➒➁✏➇✫➙⑦➯➲➊✂❽↕➄➍➁✫➉➣➐♥➭❪➡●➁❊➃✤➉✺➊ →✂➇➏➁✫➃✏➎➒➔✧→❢➅❢➄➍➁❨➉➣❿❾❿➑➄➆❻✂➁⑦➄➍➇➆➉➣➊✂❽➆❼➥➄➍❼❾➎➒➊✂❽✫➙❑➯➶➄✝➄➍➅✂➇➏➊✂❽✝➎➒➅❢➄✝➄➆❻❪➉✺➄✝➡✍➁❨➃✤➉➣➊➢➐✂s➁ ✮❪➊✂➁➜➉➣➊☎➉➣➅❢➄➆➎➒➔❩➉Ô➄➍➎➒➊ ❼❾➊✡➄➆❻✂❼➂❽⑦➡●➉✤➤✖➄➍❻❪➉Ô➄✬➡●➁➞➃✤➉✺➊➠➅✂❽➏➁➈❼❾➊✿➄➍❻✂➁➞→✂❿➂➉➣➃✫➁➞➎➣➟ ➙ A ❀②❋➁❼➂s➃ A = A, Q, i , F, δ ➣✶⑤❩⑨✽➥➆➟➠➂s➃ Q : U ∩ F = ∅} ❷✇❸❛❹✚❺❼❻❾❽❫❻✕❿✽❺ ➺ à★⑥ ✳➒➼ ➄ 0 δ ℘ = { H, a, J : ➋ ➊❙➝✈⑦✘➟❾➟ q∈H ↔✻➉❶➂s⑨ ④③ ➂✇⑦✘⑨í⑦✘➢❱➃➻➊❙➞➆⑦✘➃❢➊❙⑨✽➣ ➈➢❱➃ ➃❾➉❶➂s➝➸➂ F ℘ := {U ⊆ ➅ a ➦ q ∈J q→q} ⑥ ➺ à★⑥ ❚➌➼ A℘ = A, ℘(Q), {i0 }, F ℘ , δ ℘ ➅✲➤➑⑦✘➟❾➟➠➂➑➥➆➃✢➉❶➂✼→ ❛➔❤↕❝➯✟→✁➯✓➒✞➏✞➍ ÿ↕ ➙ ➣ A ➦ ❆❈ ❀⑧⑨⑤ ✡⑦ ☎⑩ ❷❶ ❷✇❸❛❹✚❺❼❻❾❽❫❻✕❿✽❺ ❩⑨②⑦✘➢❱➃➻➊❙➞➆⑦✘➃➻➊❙⑨ ➅ ✻→✁➒➸→✁➳ ❨➏➻➯Ò➏➻➎✘➒❢➏➑➐ ➋❐➋ ➊❙➝➆⑦✘➟❾➟ ⑦✘⑨✽➥ ➦ ➦ q ∈Q a∈A ➃❾➉❶➂s➝➸➂ ➅✈⑦✘➃➈➞❑➊★➅s➃✿➊❙⑨❜➂ ➅s➢➹➤➡➉✪➃❾➉♥⑦✘➃ ➣ a ➦ q ∈Q q→q à➒à ➙ ➾ ➎➒➔☎→✂❿➂➁þ➻❢❼➥➄➲➤✖➉➣➊❢➐➓➚✦❼➂➊✂❼❾➔❩➉➣❿❜➛➝➅❢➄➆➎➒➔✧➉✺➄t➉ ✜ ⑥ ➯➶➄✛❼➂❽❊➃✫❿➂➁✫➉➣➇➈➄➆❻❪➉✺➄❊➟❫➎➒➇❝➉✦➐✂➁✏➄➆➁✫➇➏➔✧❼❾➊✂❼➂❽↕➄➍❼➂➃☎➉➣➊❢➐ ➄➍➎➣➄➍➉➣❿✍➉➣➅❢➄➍➎➣➔❩➉✺➄➆➎➒➊♥➭❑➉➣❿➂❿✝➡✍➁✿❻❪➉✤➸➒➁✧➄➍➎☞➐✂➎ ❼❾❽➝➄➍➎✿❿❾➎➑➎➣➫✦➅❢→✙➄➆❻✂➁❯➊✂➁þ➻➑➄➞❽↕➄t➉✺➄➆➁❝❼➂➊✣➺ ★à ⑥ ✑➌➼t➭✼➡❨❻✂❼❾➃t❻✙➁➧➻➑❼➂❽↕➄➍❽➞➉➣➊✂➐➋❼❾❽➀➅✂➊✂❼❾➵✴➅✂➁➣➙➈ý❪➎➒➇➱➄➆❻✂➁✫❽➏➁ ➉➣➅➑➄➍➎➒➔✧➉✺➄t➉➑➭❢➇➆➁✏➃✫➎➒↔➣➊✂➠❼ ô✏❼➂➊✂↔❝➄➆❻✂➁➞❿➮➉➣➊✂↔➣➅❪➉➣↔➒➁➀❼❾❽✬❿➂❼❾➊✂➁✤➉➣➇●❼➂➊✖➄➍❻✂➁➞❽↕➄➍➇➆❼❾➊✂↔✂➙ € ▲☛ ❹❸❺♠ ❝❻ ❯❋ ✑✏ ã ❸✡❿➹Ï❫❸ ❼ ➀ ❼➊❙➝✇➂s➜✘➂s➝€⑩❂⑦✘➢❱➃➻➊❙➞➆⑦✘➃❢➊❙⑨ ➇☞➃❾➉❶➂✬➂ ❃➩❶➊❙⑨❜➂s⑨❶➃ ⑦✘➟ ℘ ➅➫➃❢➊❙➃ó⑦✘➟ ⑦✘⑨✽➥Û➥✛➂ A ➦ A ➦ ➣ ➃➻➂s➝€➞ ⑨ ➅s➃ ➤➛➣ ➧➊❙➝➸➂➡➊❙➜✘➂s➝➸➇ ℘ L(A ) = L(A) ➦ ➦ ➦ ✜✣ ✰ ➎❢➭♥➄➍❻✂➁❯➇➏➁✫➃✫❼❾→❜➁❝➄➆➎✡➉✺➄➆➄➍➉➣➃t➫➓➄➆❻✂➁❯→✂➇➆➎➣➨✂❿➂➁✏➔ ê ❼➂❽➱➄➍❻✂❼❾❽✫ç❩✮❪➇➏❽➏➄➞➃✏➎➒➔✧→❢➅❢➄➍➁ ℘ x ∈ L(A) ➉➣➊❢➐✛➄➍❻✂➁✏➊❝➃t❻✂➁✏➃t➫ ➙ ✰ ❼➂➊✂➃✏➁✉➄➆❻✂➁●❿➂➉✺➄➆➄➆➁✫➇❏❼➂❽❏➐✂➁✏➄➆➁✫➇➏➔✧❼❾➊✂❼➂❽↕➄➍❼➂➃✺➭Ô➄➆❻✂➁✍➄➆❼➂➔☎➁✪➊✂➁✫➁✏➐✂A➁✫➐ ❼❾❽➈➉✺➃✏➄➍➅✂➉➣❿➂❿➥➤☞❿➂❼❾➊✂➁✤➉✺x➇✘❼➂∈➊✙L(A)?

A\|b\)+d? x ➄➍➉➣➫➣➁✬➄➍➎✘❽➏➁✫➁❨➡❨❻✂➁✏➄➆❻✂➁✫➇✪➎➒➇✝➊❢➎➣➄ A ê✪✫✝➸❁❼❾➐✂➁✫➊➌➄➍❿➥➤➒0➭➌➄➍1❻❢➁➱➉✺➊✂❽➏n−1 ➡✍➁✫➇✪➐✂➁✏→❜➁✏➊✂➐✂❽✉➎➒➊➢➨❜➎➣➄➆❻ x ∈ L(A) ➉➣➊✂➐ ✏ ➙ ✒➱➎✺➄➍❼➂➃✏➁➜➄➆❻❪➉✺➄ ❼➥➟✩➉➣➊✂➐✧➎➒➊✂❿❾➤➢❼➥➟✼➄➆❻✂➁✫➇➏➁➀➉➣➇➏➁ ❽➏➅✂➃t❻✿➄➍❻❪➉Ô➄ A ➺ à★⑥ ✑➌➼ x x ∈ L(A) x x x qi , i < n + 1 xn−1 i0 = q0 →0 q1 →1 q2 →2 q2 . . xj i0 −→ qj+1 ❼➥➬ qj+1 ∈ Hj+1 å➜➁✫➊✂➃✏➁➣➭ ❼❾➬ ➙✉ý❪➎➒➇✉➄➍❻✂➁✏➊✡➄➆❻✂➁✫➇➏➁✘➁➧➻➑❼➂❽↕➄➍❽❨➉➣➊✡➉✺➃✫➃✫➁✏→❢➄➍❼❾➊✂↔➢❽➏➄➍➉✺➄➍➁➀❼❾➊ x ∈ L(A) Hn ∩ F = ∅ ➙➀å➱➁✏➇➆➁❝➁✫➉➣➃t❻➋❽➏➄➆➁✫→☞➄➍➉➣➫➣➁✏❽➝➄➍❼❾➔✧➁❊➵✴➅❪➉➣➐✂➇➆➉✺➄➍❼❾➃➈❼❾➊➓➄➍❻✂➁➈➊✴➅✂➔❝➨✸➁✫➇➀➎➣➟❂❽➏➄t➉Ô➄➍➁✫❽✏ç➜➟❫➎➣➇➱↔➒❼➥➸➒➁✏➊ Hn ➭✂➡●➁➞➃✏➎➒➔✧→❢➅❢➄➍➁ ➨➌➤✖➐✂➎➣❼➂➊✂↔ ➔✧➉➣➊➌➤✿❿❾➎➑➎➣➫❁➅❢→✂❽⑦➟❫➎➒➇✬➁✏➸➣➁✫➇↕➤ ➙✪å➜➎❄➡✍➁✏➸➣➁✫➇✏➭ Hj Hj+1 Q q ∈ Hj ➄➆❻✂❼➂❽➈➊❁➅❢➔❝➨❜➁✏➇❯❼➂❽➈➨❪➉➣❽➆❼❾➃✤➉➣❿❾❿❾➤➩➨✸➎➒➅✂➊✂➐✂➁✏➐❅➟❫➎➒➇✛↔➒❼➥➸➒➁✏➊ ➙ ✰ ➎☞➄➆❻✂➁❩➄➍❼❾➔✧➁✧➇➆➁✏➵❁➅❢❼➂➇➆➁✏➔✧➁✏➊➌➄❯❼➂❽ A ➐✂➎✷➡❨➊✣➄➍➎➩➉➩➃✏➎➒➊✂❽↕➄t➉➣➊➌➄✧➐✂➁✫→✸➁✫➊✂➐❢❼➂➊✂↔➩➎➒➊ ➄➍❼❾➔✧➁✏❽❝➄➍❻✂➁✡❿➂➁✏➊✂↔➣➄➆❻Û➎➣➟ ➙✢❺✬❻✂❼➂❽☎❼➂❽❯➔✛➅✂➃t❻ A ➨✸➁✏➄➏➄➍➁✫➇✏➙✡å➱➎✷➡✍➁✏➸➒➁✏➇✫➭✝❼❾➊➳→✂➇➆➉➣➃✏➄➆❼➂➃✫➉➣❿✝➄➍➁✫➇➏➔✧❽➞ ➄➍❻❢❼➂❽❊❼➂❽➞❽➏➄➆❼➂❿➂❿✝➊❢➎➣➄✛↔➣➎➑➎❁➐➳➁✏x➊✂➎➒➅✂↔➣❻♥✬ ➙ ❞●➁✫➃✫➉➣➅✂❽➏➁ ➄➆❻✂➁❯➃✫➎➒➊❢❽➏➄t➉✺➊✴➄➞❼➥➄➝➄➍➉➣➫➣➁✏❽➞➄➆➎✖➃✫➎➒➔☎→✂➅❢➄➆➁❯➉✿❽➆❼❾➊✂↔➒❿❾➁✛❽➏➄➆➁✫→➩❼➂❽➝➄➆➎➑➎❩❿➮➉➣➇➏↔➒➁➣➙➞❺✬❻✂❼❾❽➀❼➂❽➀➨✸➁✫➃✫➉➣➅✂❽➏➁ ➄➍➎ ➙è➯➶➟➞➄➍❻✂➁➋❽↕➄➍➇➆❼❾➊✂↔➦❼❾❽❩➸➒➁✏➇➏➤❵❿❾➎➒➊✂↔✂➭⑦➄➆❻✂❼➂❽ ➡✍➁➋➇➆➁✏➃✫➎➒➔☎→✂➅❢➄➆➁➓➄➍❻✂➁☞➄➆➇➍➉➣➊❢❽➆❼❾➄➆❼➂➎➒➊ Hj Hj+1 ➔☎➁✤➉➣➊❢❽❨➄➆❻❪➉✺➄❨➡✍➁➈➇➏➁✫➃✫➎➣➔✧→✂➅➑➄➍➁➞➄➍❻✂➁➞❽➍➉✺➔✧➁➞→✂➇➏➎➒➨✂❿➂➁✏➔❶➎✷➸➒➁✏➇➀➉➣➊✂➐✦➎✷➸➒➁✏➇✫➙⑦➯➲➊✂❽↕➄➍➁✫➉➣➐♥➭❪➡●➁❊➃✤➉✺➊ →✂➇➏➁✫➃✏➎➒➔✧→❢➅❢➄➍➁❨➉➣❿❾❿➑➄➆❻✂➁⑦➄➍➇➆➉➣➊✂❽➆❼➥➄➍❼❾➎➒➊✂❽✫➙❑➯➶➄✝➄➍➅✂➇➏➊✂❽✝➎➒➅❢➄✝➄➆❻❪➉✺➄✝➡✍➁❨➃✤➉➣➊➢➐✂s➁ ✮❪➊✂➁➜➉➣➊☎➉➣➅❢➄➆➎➒➔❩➉Ô➄➍➎➒➊ ❼❾➊✡➄➆❻✂❼➂❽⑦➡●➉✤➤✖➄➍❻❪➉Ô➄✬➡●➁➞➃✤➉✺➊➠➅✂❽➏➁➈❼❾➊✿➄➍❻✂➁➞→✂❿➂➉➣➃✫➁➞➎➣➟ ➙ A ❀②❋➁❼➂s➃ A = A, Q, i , F, δ ➣✶⑤❩⑨✽➥➆➟➠➂s➃ Q : U ∩ F = ∅} ❷✇❸❛❹✚❺❼❻❾❽❫❻✕❿✽❺ ➺ à★⑥ ✳➒➼ ➄ 0 δ ℘ = { H, a, J : ➋ ➊❙➝✈⑦✘➟❾➟ q∈H ↔✻➉❶➂s⑨ ④③ ➂✇⑦✘⑨í⑦✘➢❱➃➻➊❙➞➆⑦✘➃❢➊❙⑨✽➣ ➈➢❱➃ ➃❾➉❶➂s➝➸➂ F ℘ := {U ⊆ ➅ a ➦ q ∈J q→q} ⑥ ➺ à★⑥ ❚➌➼ A℘ = A, ℘(Q), {i0 }, F ℘ , δ ℘ ➅✲➤➑⑦✘➟❾➟➠➂➑➥➆➃✢➉❶➂✼→ ❛➔❤↕❝➯✟→✁➯✓➒✞➏✞➍ ÿ↕ ➙ ➣ A ➦ ❆❈ ❀⑧⑨⑤ ✡⑦ ☎⑩ ❷❶ ❷✇❸❛❹✚❺❼❻❾❽❫❻✕❿✽❺ ❩⑨②⑦✘➢❱➃➻➊❙➞➆⑦✘➃➻➊❙⑨ ➅ ✻→✁➒➸→✁➳ ❨➏➻➯Ò➏➻➎✘➒❢➏➑➐ ➋❐➋ ➊❙➝➆⑦✘➟❾➟ ⑦✘⑨✽➥ ➦ ➦ q ∈Q a∈A ➃❾➉❶➂s➝➸➂ ➅✈⑦✘➃➈➞❑➊★➅s➃✿➊❙⑨❜➂ ➅s➢➹➤➡➉✪➃❾➉♥⑦✘➃ ➣ a ➦ q ∈Q q→q à➒à ➙ ➾ ➎➒➔☎→✂❿➂➁þ➻❢❼➥➄➲➤✖➉➣➊❢➐➓➚✦❼➂➊✂❼❾➔❩➉➣❿❜➛➝➅❢➄➆➎➒➔✧➉✺➄t➉ ✜ ⑥ ➯➶➄✛❼➂❽❊➃✫❿➂➁✫➉➣➇➈➄➆❻❪➉✺➄❊➟❫➎➒➇❝➉✦➐✂➁✏➄➆➁✫➇➏➔✧❼❾➊✂❼➂❽↕➄➍❼➂➃☎➉➣➊❢➐ ➄➍➎➣➄➍➉➣❿✍➉➣➅❢➄➍➎➣➔❩➉✺➄➆➎➒➊♥➭❑➉➣❿➂❿✝➡✍➁✿❻❪➉✤➸➒➁✧➄➍➎☞➐✂➎ ❼❾❽➝➄➍➎✿❿❾➎➑➎➣➫✦➅❢→✙➄➆❻✂➁❯➊✂➁þ➻➑➄➞❽↕➄t➉✺➄➆➁❝❼➂➊✣➺ ★à ⑥ ✑➌➼t➭✼➡❨❻✂❼❾➃t❻✙➁➧➻➑❼➂❽↕➄➍❽➞➉➣➊✂➐➋❼❾❽➀➅✂➊✂❼❾➵✴➅✂➁➣➙➈ý❪➎➒➇➱➄➆❻✂➁✫❽➏➁ ➉➣➅➑➄➍➎➒➔✧➉✺➄t➉➑➭❢➇➆➁✏➃✫➎➒↔➣➊✂➠❼ ô✏❼➂➊✂↔❝➄➆❻✂➁➞❿➮➉➣➊✂↔➣➅❪➉➣↔➒➁➀❼❾❽✬❿➂❼❾➊✂➁✤➉➣➇●❼➂➊✖➄➍❻✂➁➞❽↕➄➍➇➆❼❾➊✂↔✂➙ € ▲☛ ❹❸❺♠ ❝❻ ❯❋ ✑✏ ã ❸✡❿➹Ï❫❸ ❼ ➀ ❼➊❙➝✇➂s➜✘➂s➝€⑩❂⑦✘➢❱➃➻➊❙➞➆⑦✘➃❢➊❙⑨ ➇☞➃❾➉❶➂✬➂ ❃➩❶➊❙⑨❜➂s⑨❶➃ ⑦✘➟ ℘ ➅➫➃❢➊❙➃ó⑦✘➟ ⑦✘⑨✽➥Û➥✛➂ A ➦ A ➦ ➣ ➃➻➂s➝€➞ ⑨ ➅s➃ ➤➛➣ ➧➊❙➝➸➂➡➊❙➜✘➂s➝➸➇ ℘ L(A ) = L(A) ➦ ➦ ➦ ✜✣ ✰ ➎❢➭♥➄➍❻✂➁❯➇➏➁✫➃✫❼❾→❜➁❝➄➆➎✡➉✺➄➆➄➍➉➣➃t➫➓➄➆❻✂➁❯→✂➇➆➎➣➨✂❿➂➁✏➔ ê ❼➂❽➱➄➍❻✂❼❾❽✫ç❩✮❪➇➏❽➏➄➞➃✏➎➒➔✧→❢➅❢➄➍➁ ℘ x ∈ L(A) ➉➣➊❢➐✛➄➍❻✂➁✏➊❝➃t❻✂➁✏➃t➫ ➙ ✰ ❼➂➊✂➃✏➁✉➄➆❻✂➁●❿➂➉✺➄➆➄➆➁✫➇❏❼➂❽❏➐✂➁✏➄➆➁✫➇➏➔✧❼❾➊✂❼➂❽↕➄➍❼➂➃✺➭Ô➄➆❻✂➁✍➄➆❼➂➔☎➁✪➊✂➁✫➁✏➐✂A➁✫➐ ❼❾❽➈➉✺➃✏➄➍➅✂➉➣❿➂❿➥➤☞❿➂❼❾➊✂➁✤➉✺x➇✘❼➂∈➊✙L(A)?

T❻✂➁✏❽➝➉✺➄✬➄➆❻✂➁➞➨❜➁✏↔➒❼➂➊❢➊✂❼➂➊✂↔❯➎✺➟❑➄➆❻✂➁➞❿➂❼➂➊❢➁➣➙ ➔❩➉Ô➄➍➃t❻✂➁✏❽➝➉✺➄✬➄➆❻✂➁➞➁✫➊✂➐✦➎➣➟❑❿➂❼❾➊✂➁➣➙ • \( • \) • \| ❿❾➁✏➟ ➄❊➺❫➎➒→✸➁✫➊✂❼❾➊✂↔✴➼●➨✂➇➆➉➣➃t➫➣➁➧➄✤➙ ➇➏❼➂↔➒❻➌➄❊➺❫➃✫❿❾➎➒❽➆❼❾➊✂↔✴➼●➨✂➇➆➉➣➃t➫➣➁➧➄✤➙ ➄➆➇➍➉➣➊❢❽➆❿➮➉Ô➄➍➁✫❽✬❼❾➊➌➄➍➎ ∪ ➙ ❺ ❻✴➅✂❽✏➭ Ò ❲ + ✗ ➄➍➇➍➉✺➊✂❽➆❿➂➉✺➄➍➁✏❽●❼➂➊➌➄➆➎ ✬ ➙❐✒➜➎➣➄➍❼❾➃✫➁➜➄➍❻❪➉✺➄●❼➂➊ ➽❊➾ ➉➒➚➓➪✙➄➆❻✂➁✫➇➏➁ ( ∪ ) ? \(a\|b\)+d? x ➄➍➉➣➫➣➁✬➄➍➎✘❽➏➁✫➁❨➡❨❻✂➁✏➄➆❻✂➁✫➇✪➎➒➇✝➊❢➎➣➄ A ê✪✫✝➸❁❼❾➐✂➁✫➊➌➄➍❿➥➤➒0➭➌➄➍1❻❢➁➱➉✺➊✂❽➏n−1 ➡✍➁✫➇✪➐✂➁✏→❜➁✏➊✂➐✂❽✉➎➒➊➢➨❜➎➣➄➆❻ x ∈ L(A) ➉➣➊✂➐ ✏ ➙ ✒➱➎✺➄➍❼➂➃✏➁➜➄➆❻❪➉✺➄ ❼➥➟✩➉➣➊✂➐✧➎➒➊✂❿❾➤➢❼➥➟✼➄➆❻✂➁✫➇➏➁➀➉➣➇➏➁ ❽➏➅✂➃t❻✿➄➍❻❪➉Ô➄ A ➺ à★⑥ ✑➌➼ x x ∈ L(A) x x x qi , i < n + 1 xn−1 i0 = q0 →0 q1 →1 q2 →2 q2 .

Download PDF sample

Rated 4.95 of 5 – based on 16 votes