Lectures on Three-Manifold Topology (Regional conference by William Jaco

By William Jaco

This manuscript is a close presentation of the 10 lectures given through the writer on the NSF local convention on Three-Manifold Topology, held October 1977, at Virginia Polytechnic Institute and kingdom collage. the aim of the convention was once to provide the present situation in three-manifold topology and to combine the classical effects with the numerous fresh advances and new instructions.

Show description

Read or Download Lectures on Three-Manifold Topology (Regional conference series in mathematics) (Cbms Regional Conference Series in Mathematics) PDF

Similar topology books

Infinite words : automata, semigroups, logic and games

Endless phrases is a vital conception in either arithmetic and computing device Sciences. Many new advancements were made within the box, inspired through its software to difficulties in laptop technological know-how. endless phrases is the 1st handbook dedicated to this subject. countless phrases explores all facets of the speculation, together with Automata, Semigroups, Topology, video games, common sense, Bi-infinite phrases, limitless timber and Finite phrases.

Topological Vector Spaces

The current booklet is meant to be a scientific textual content on topological vector areas and presupposes familiarity with the weather of common topology and linear algebra. the writer has chanced on it pointless to rederive those effects, due to the fact that they're both uncomplicated for plenty of different parts of arithmetic, and each starting graduate scholar is probably going to have made their acquaintance.

Hamiltonian Dynamics and Celestial Mechanics: A Joint Summer Research Conference on Hamiltonian Dynamics and Celestial Mechanics June 25-29, 1995 Seattle, Washington

This e-book comprises chosen papers from the AMS-IMS-SIAM Joint summer time examine convention on Hamiltonian structures and Celestial Mechanics held in Seattle in June 1995.

The symbiotic dating of those subject matters creates a usual mix for a convention on dynamics. subject matters coated comprise twist maps, the Aubrey-Mather idea, Arnold diffusion, qualitative and topological stories of platforms, and variational tools, in addition to particular subject matters similar to Melnikov's approach and the singularity homes of specific systems.

As one of many few books that addresses either Hamiltonian structures and celestial mechanics, this quantity bargains emphasis on new matters and unsolved difficulties. some of the papers provide new effects, but the editors purposely integrated a few exploratory papers in keeping with numerical computations, a piece on unsolved difficulties, and papers that pose conjectures whereas constructing what's known.

Features:

Open examine problems
Papers on primary configurations

Readership: Graduate scholars, learn mathematicians, and physicists attracted to dynamical platforms, Hamiltonian structures, celestial mechanics, and/or mathematical astronomy.

Additional info for Lectures on Three-Manifold Topology (Regional conference series in mathematics) (Cbms Regional Conference Series in Mathematics)

Sample text

F : h −→ h f, f −1 holomorph . : offene Teilmenge von C), dann heißen X und Y biholomorph ¨ aquivalent, falls ein f : X −→ Y existiert, sodass f bijektiv ist und f, f −1 holomorph sind. 9 hist biholomorph ¨ aquivalent zu D := z ∈ C |z| < 1 . Beweis: Betrachte die Abbildung f : h −→ D, f (z) := z−i z+i . |f (z)| < 1 ⇐⇒ |z + i|2 > |z − i|2 ⇐⇒ (y + i)2 > (y − i)2 ⇐⇒ 2y > −2y ⇐⇒ y > 0 Bemerkung: 1. Die Umkehrabbildung zu f ist f −1 = f f −1 (w) = 1 w+1 i w−i 2. Es gibt zu f : h Aut(D). ): fA (z) = = az + b = cz + d (az + b)(c¯ z + d) |cz + d|2 (ad − bc) z |cz + d|2 Also fA ∈ Aut(h) ⇐⇒ A ∈ GL(2, R)+ .

1 i (Eigenwertgleichung). Die andere Richtung folgt durch Nachrechnen! 33 3 Die Riemannschen Fl¨achen C, C und h Also zu zeigen: Aut(D)0 = fN N = α 0 0 α = g ∃ s ∈ S 1 : g(z) = sz (Dabei ist S 1 := z ∈ C |z| < 1 ). Das Unterstrichene folgt aber aus dem folgenden Lemma. 2 Ist h ∈ Aut(D), dann |h(z)| ≤ |z|, dto. h. 11 (Lemma von Schwarz) Sei f : D −→ C holomorph, f (0) = 0, |f (0)| < 1 f¨ ur |z| < 1, dann gilt: 1. |f (z)| ≤ |z| ∀ |z| ≤ 1 2. Ist |f (z0 )| = |z0 | f¨ ur ein z0 = 0, dann ist f (z) = λz mit geeignetem λ ∈ C, |λ| = 1 1 Beweis: Setze g(z) := f (z) ur z da f (z) = 0, folgt g holomorph in D.

Damit ist ℘(z + γ) = ℘(z) + c(γ) (∗) (wobei c(γ) eine Konstante ist, die von γ abh¨ angt). Zeige c(γ) = 0: Offensichtlich ist ℘(−z) = ℘(z) (℘ ist eine gerade Funktion). 1 Ell(Γ) := f ∈ M er(C) ∀ γ ∈ Γ : f (z + γ) = f (z) heißt Ko ¨rper der elliptischen Funktionenelliptische Funktionen zu Γ. Konvention: Ist z0 Pol von f , dann setze f (z0 ) = ∞ ∈ C. 1 Ell(Γ) ist ein K¨orper. 1 Sei f ∈ Ell(Γ). F¨ ur z0 ∈ C, γ ∈ Γ gilt: ordz0 (f ) = ordz0 +γ (f ) Beweis: Es gibt eine offene Umgebung U von z0 und eine auf U holomorphe Funktion g mit g(z0 ) = 0, so dass f (z) = (z − z0 )n g(z) f¨ ur z ∈ U, z = z0 und n = ordz0 f (∗) (∗) Dann gilt aber f¨ ur z ∈ γ + U (γ + U ist offene Umgebung von z0 + γ): f (z) = f (z − γ) = n (z −(z0 +γ)) g(z −γ).

Download PDF sample

Rated 4.37 of 5 – based on 18 votes